Plasma for perfect tape bonding

TIGRES Plasma for perfect adhesion

Introduction

Berrin Küzün

Dipl. Phys.-Ing.

Head of process engineering,

project management, working with plasma and plasma coating since 2009.

Tigres GmbH Sandhagenweg 2 21436 Marschacht (near Hamburg)

Fon: +49 4176 948 7712 kuezuen@tigres.de

Plasma for perfect tape bonding

Introduction

Peter van Steenacker

Electronics engineer

Sales Manager since 1998 for plasma systems. Extensive experience with plasma nozzles (APPJ), DBD-Plasma and vacuum plasma.

Extensive experience in lecturing regarding plasma treatment, with presentations, seminars, webinars and training.

Head of PlasmaXperience, the platform from TIGRES for plasma know-how

Tigres GmbH Sandhagenweg 2 21436 Marschacht (near Hamburg) Germany Fon: +49 4176 948 77-28 <u>Steenacker@tigres.de</u>

Plasma for perfect tape bonding

TIGRES GmbH has been established in **1993** as an **independend**, family owned technology based company

Targets:

- ✓ Development
- Production
- ✓ Sales

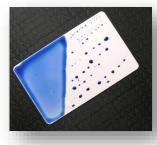
of atmospheric plasma (AP) units

- AP Plasma devices for narrow and wide plasma application
- AP Plasma in different power categories
- AP Plasma with different temperatures
- Generators

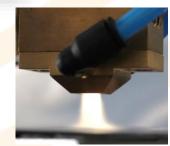
TIGRES GmbH Germany

- Appr. 25 Empolyees
- Main office and production in Marschacht (near Hamburg)
- Sales office near Stuttgart
- Appr. 14 sales agents world wide

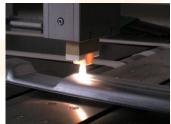
Picture from OpenClipart-Vectors auf Pixabay


Tigres-plasma.de 5

Plasma for cleaning, adhesion and coating

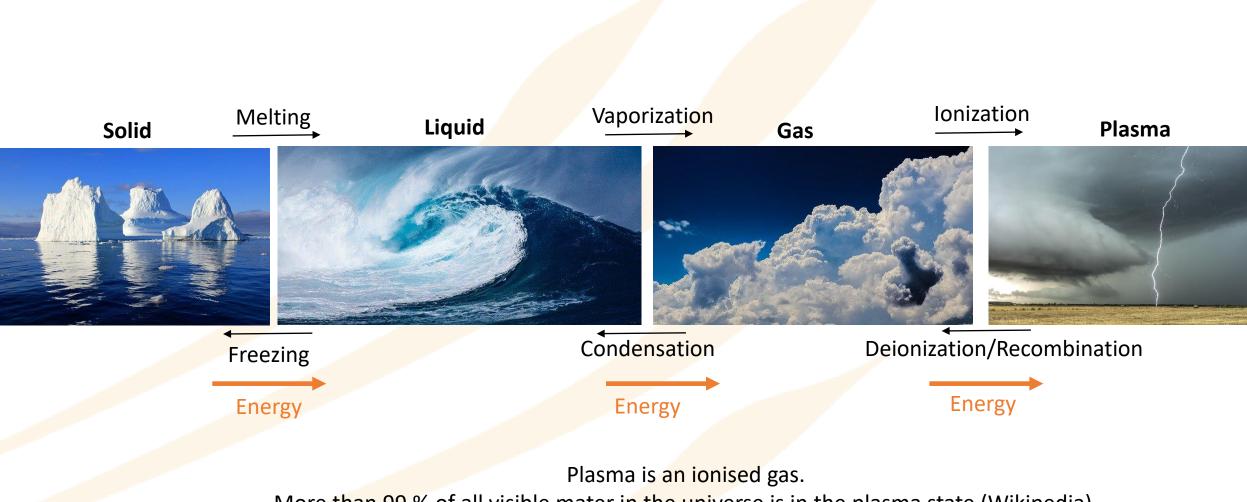

Preparation

"Cleaning", partial heating, drying, ionisation, oxidation, reduction


Activation

Improvment of adhesion and wettability (app. 80 % of all applications)

Coating


Plasma polymerisation, thin layers

Deburring

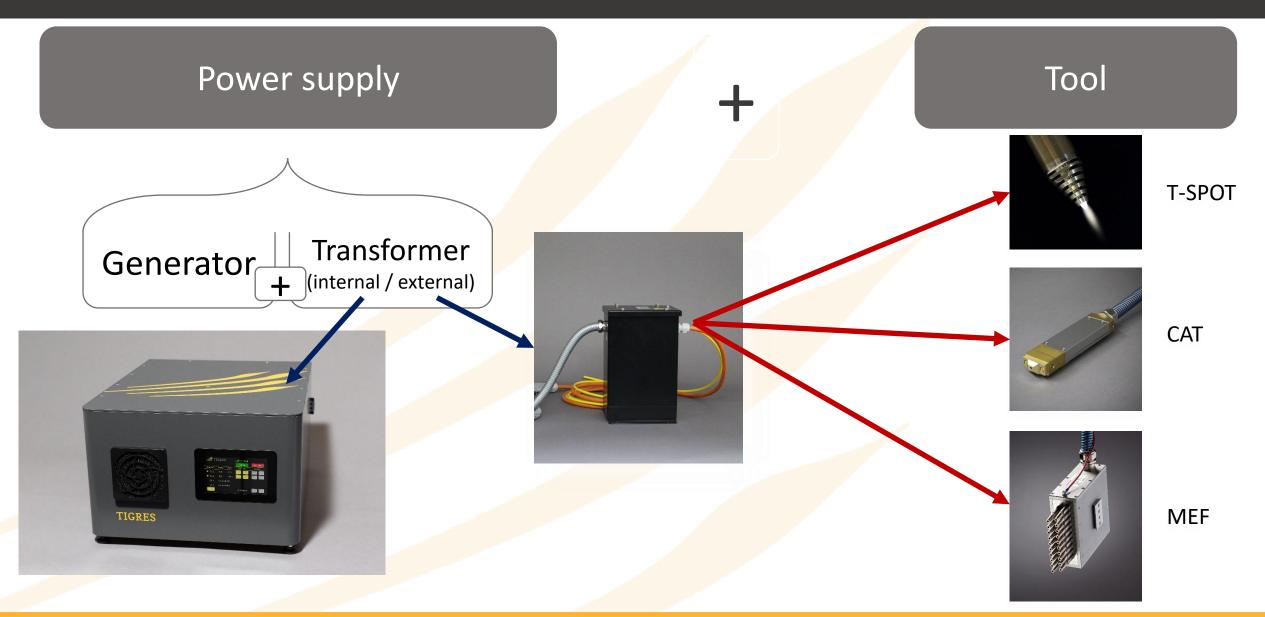
Removal of burrs and sharp edges

Plasma for perfect tape bonding

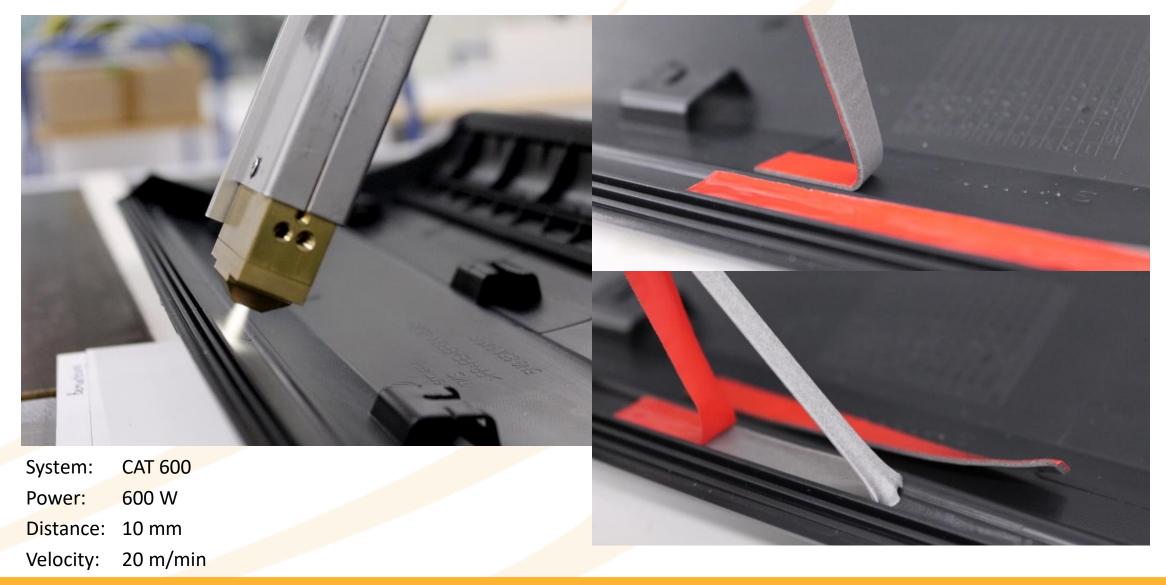
More than 99 % of all visible mater in the universe is in the plasma state (Wikipedia).

Plasma for perfect tape bonding

Atmospheric plasma


TIGRES products:

Atmospheric plasma


Plasma for perfect tape bonding

General structure of standard devices

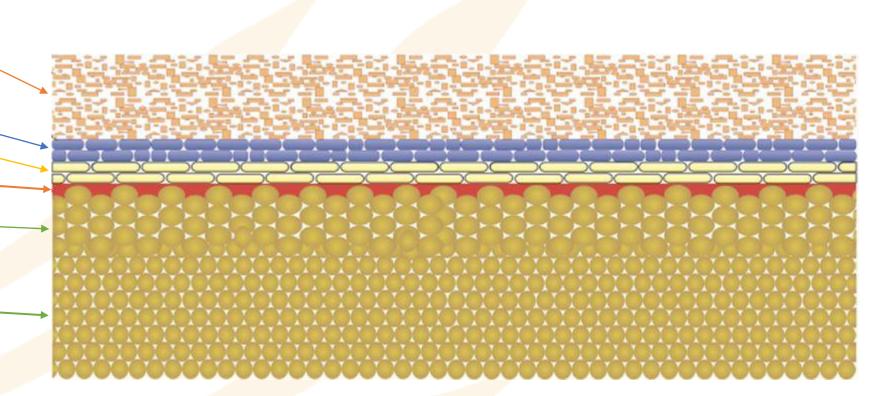
Plasma for perfect tape bonding

Application example: Activation of PP+PE for tapes

Plasma for perfect tape bonding

The surface

Dust, dirt, oil etc. >1µm


Gases, water 5-10 nm

Oxides, additives 5-10 nm

Boundary surface

Amorphous region >1 μm

Crystalline region

Picture: Dipl. Ing. (FH) Simone Fischer

Plasma for perfect tape bonding

The perfect surface

Dust free

Fat free

Dry

Plasma for perfect tape bonding

Adhesion theory

Effects multiply each other

1. Primary valency bonds

Secondary valency bonds-2.

- Van der Waals interactions 1.
- 2. **Dipol** interactions
- 3. Induction forces
- Hydrogen bonds

- **Dispersion forces** 4.
 - 5.

https://en.wikipedia.org/wiki/Van_der_Waals_force

https://pubmed.ncbi.nlm.nih.gov/25008078/

Mechanical clamping 3.

- Change of surface from semi-crystalline to amorph, (enables Polymer-Polymer-Interdiffusion)
- Electron/ion bombardment 2.


Diffusion 4.

- PVC with diffusion adhesives 1.
- PS with Cyanacrylat 2.
- PMMA with UV adhesives 3.
- Electrostatic forces 5.

Plasma for perfect tape bonding

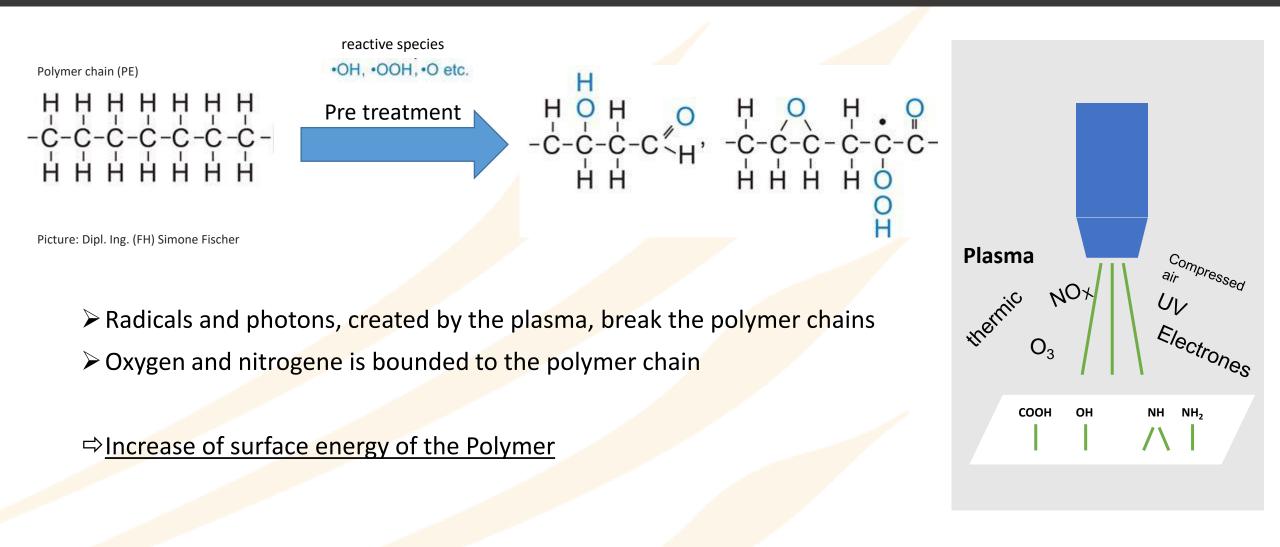

Adhesion: Why does stuff stick?

Prof. Steven Abbott PhD in Chemistry <u>https://www.stevenabbott.co.uk/about-</u> <u>prof-steven-abbott.php</u>

Plasma for perfect tape bonding

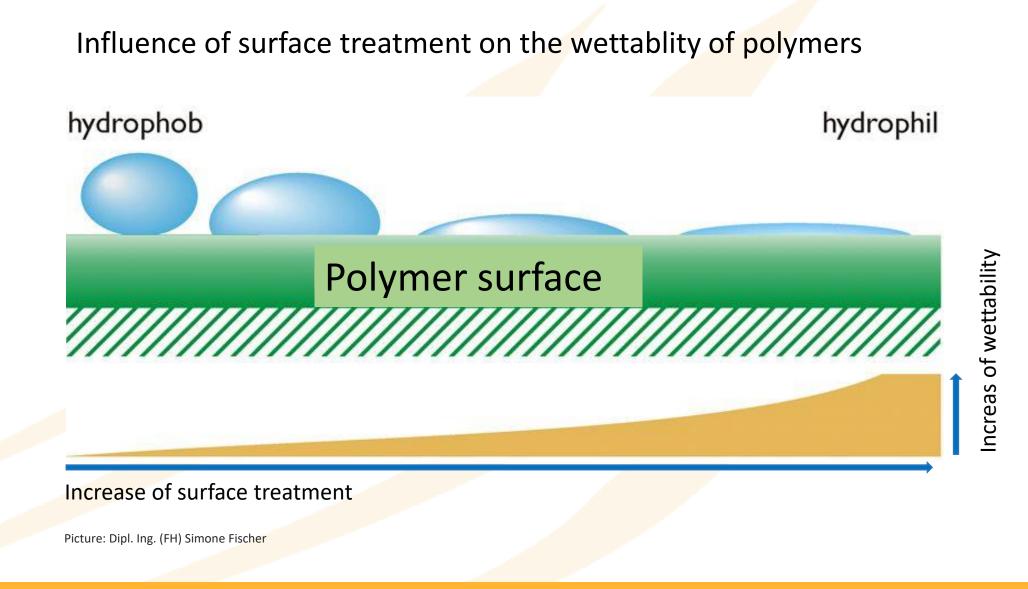
Influence of plasma on crystallinity

Crystallin/partly crystallin surface


Amorphous surface

Effect of plasma treatment: Surface gets more amorphous Enables intermingling/Entanglement

Source: https://www.stevenabbott.co.uk/practical-adhesion/entanglement.php


Plasma for perfect tape bonding

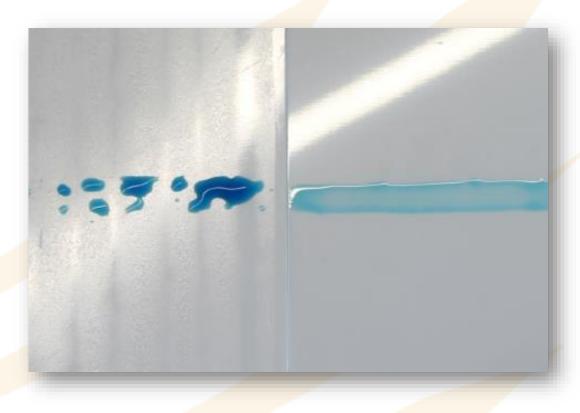
Reactions on the surface

Plasma for perfect tape bonding

Effect of surface treatment on wettabilty

Plasma for perfect tape bonding

Test inks for measurement of surface energy


Definition:

- Measurement is done in mN/m or dyne/cm.
- ISO 8296: The film of the test ink has to have a sharp edge for 2-3 sek. or more
- ISO 8296 is defined for PE film
- Lifetime is 3 months according to the ISO 8296. More details in separat test ink slides.
- Test ink shop

Plasma for perfect tape bonding

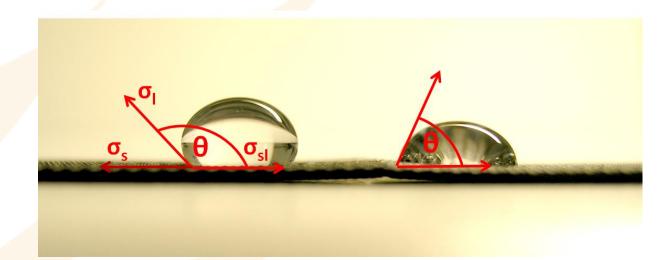
Wettability of surface

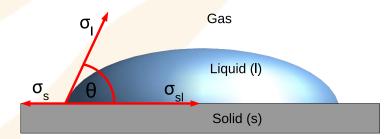
Low surface energy Test ink stay for less than 2-3 sek.

High surface energy Test ink stay for 2-3 sek. or longer

Plasma for perfect tape bonding

Surface energy and material


Typical surface energy of polymers:		Typical specified surface energy for:	
PTFE	< 18-19 mN/m	UV-Ink	Appr. 48 – 56 mN/m
Silicone	< 20 mN/m	Water based ink	Appr. 50 – 56 mN/m
РР	Appr. 29-31 mN/m	Coatings	Appr. 46 – 52 mN/m
PE	Appr. 30-32 mN/m	UV-glue	Appr. 44 – 50 mN/m
PS	Appr. 34-38 mN/m	Water based glue	Appr. 48 – 56 mN/m
РС	Appr. 35-44 mN/m	Solvent based glue	Appr. 38 mN/m
PUR	Appr. 43-47 mN/m		


Measurement of surface energy

- The contact angle can be measured very exactly with a contact angle meter
- It is possible to measure polar and disperse parts
- The polar part shows the polar interaction of dipols in the surface (oxygen)

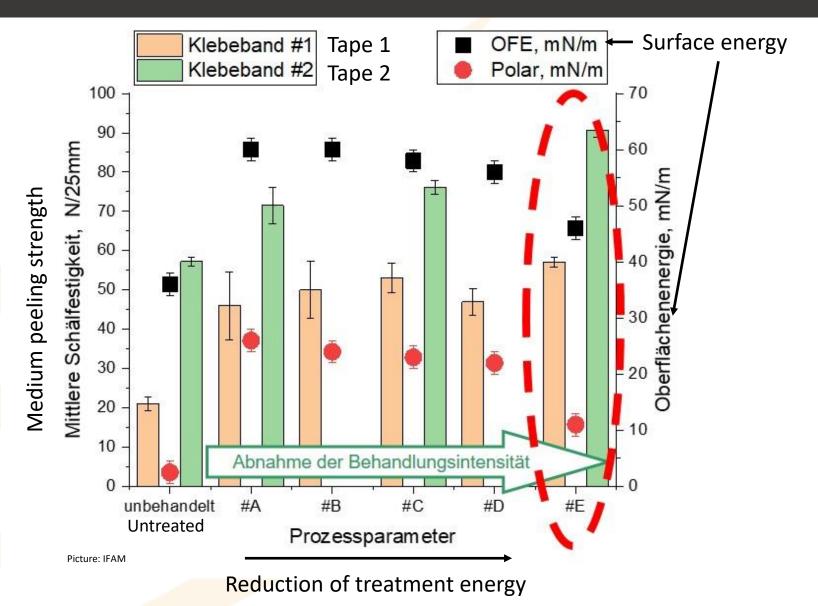
Picture: Krüss, www.mobile-surface-analyzer.com

Young's equitation: $\cos \theta = (\sigma_s - \sigma_{si}) / \sigma_i$ Simplification : $\sigma_s - \sigma_{si} = \sigma_c =$ "critical surface energy"

 $σ_{i}: surface free tension of the liquid$ $<math>σ_{s}: surface free energy of the solid$ $<math>σ_{is}: interfacial free energy solid/liquid$ θ: contact angle

Tigres-plasma.de 21

What wettability (doesn't) show


Read more (german only): https://www.plastverarbeiter.de/106103/ wie-lange-sind-plasmaaktiviertepolymeroberflaechen-offen/

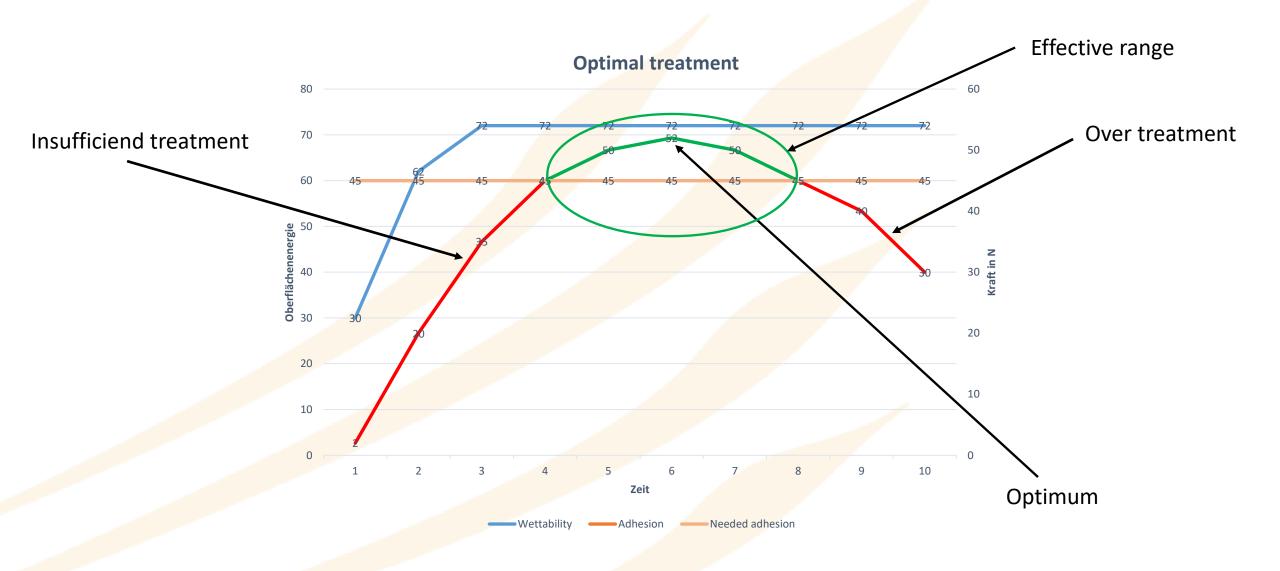
"However, within the scope of the tests carried out, no, often postulated, simple correlation between the surface energy and adhesion of the adhesives or strength of the resulting adhesive bonds could be determined. "

PDF of Fraunhofer IFAM:

https://www.ifam.fraunhofer.de/content/ dam/ifam/de/documents/Klebtechnik_O berflaechen/PLATO/plastverarbeiter-2020-beitrag-fraunhofer-ifam.PDF

Material: Varnish

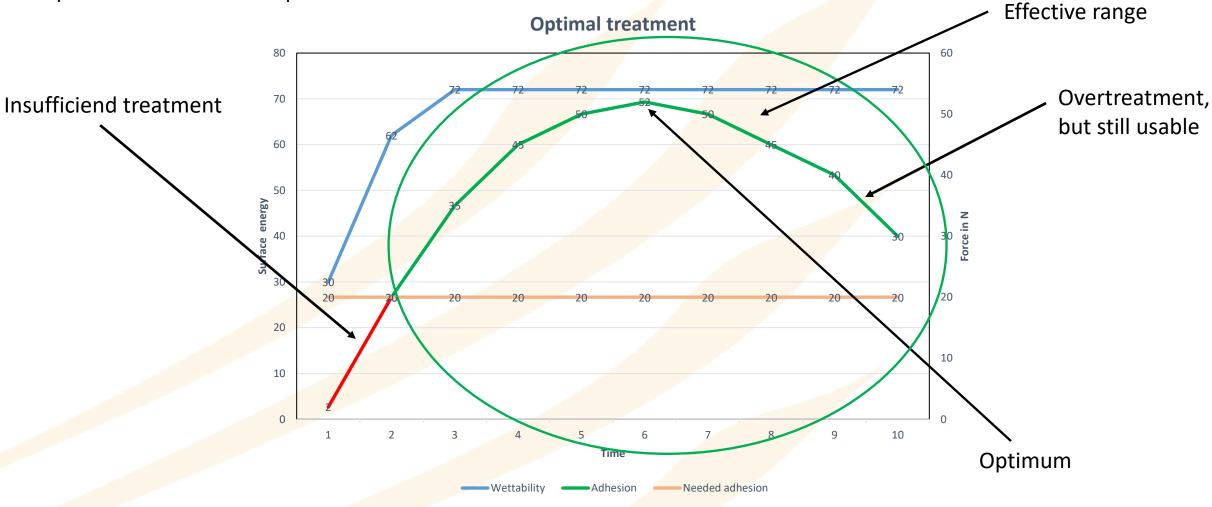
Plasma for perfect tape bonding


What wettability really means...

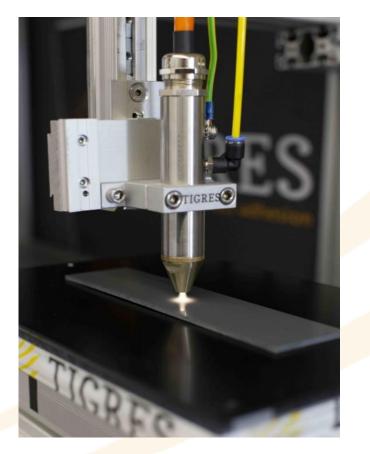
Adhesion is influenced by:	Measurable by test ink:
ADHESION:	
Primary valency bonds	No
Secondary valency bonds	<u>Yes</u>
Electrostatic forces	No
Diffusion	No
Mechanical clamping	No?
COHESION:	
Orientation of boundary layer	No
Strength and deformability of adherent layer	No
TESTING TECHNIQUE:	
Tension distribution in sample	No

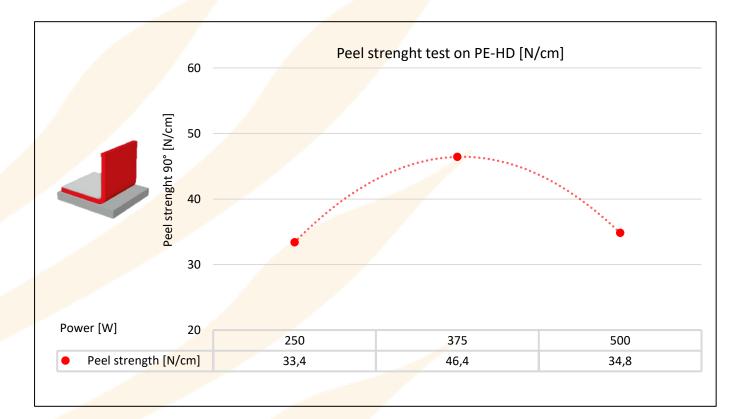
Conclusion wetability:

A good wettability is required, but not a sufficiend necessity for good adhesion

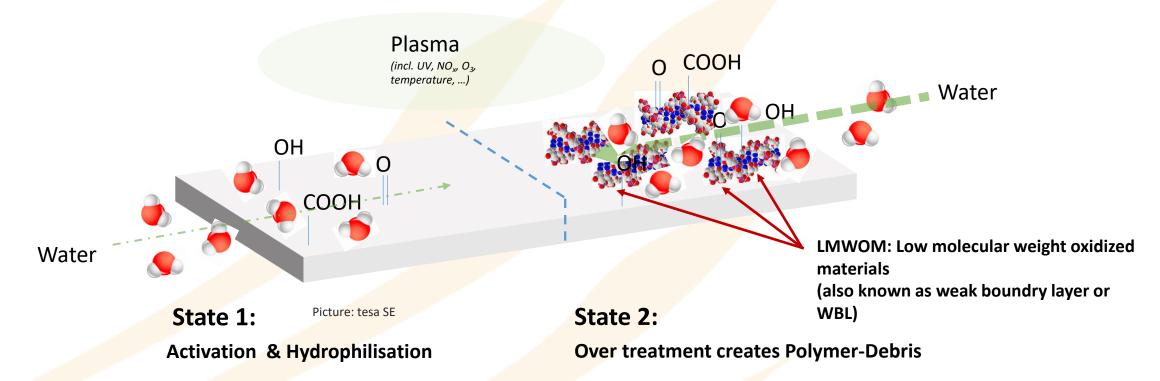

Optimising plasma: Finding the perfect plasma dose


```
Tigres-plasma.de 24
```


Optimising plasma: Finding the perfect plasma dose


Example: Lower adhesion requirement


```
Tigres-plasma.de 25
```


Influence of power on adhesion

Over treatment

What happens when you over treat?

Over treatment leads to high surface tension, but creates also:

 \geq water solvent debris (\rightarrow allows moist to penetrate in boundry layer – leads to weak boundry layer

Tigres-plasma.de 27

Degradation of surface

Overtreatment: Example tesa-tape

Used materials: PP GF30 and tesa ACX[®] 7076 Used plasma technic: T-Jet Corona (M) Mixed break (C) Cohesive break

T-Peel [N/cm] T-Peel [N/cm] after T-Peel [N/cm] Number of Cleaning Surface 240h 40° C/100% after 3d/RT after 240h 40° treatments energy [mN/m] rel. H -C/100% rel. H reconditioned immidiatelly 40,9 (C) tesa cleaner 1 x 32,1 (M) 39,4 (C) 44 3 x tesa cleaner 42,2 (C) 48 8,9 (A) 19,5 (A)

Picture: tesa SE

The correct plasma dose is crucial for the optimal adhesion

TIGRES Plasma for perfect adhesion

How to optimise plasma treatment?

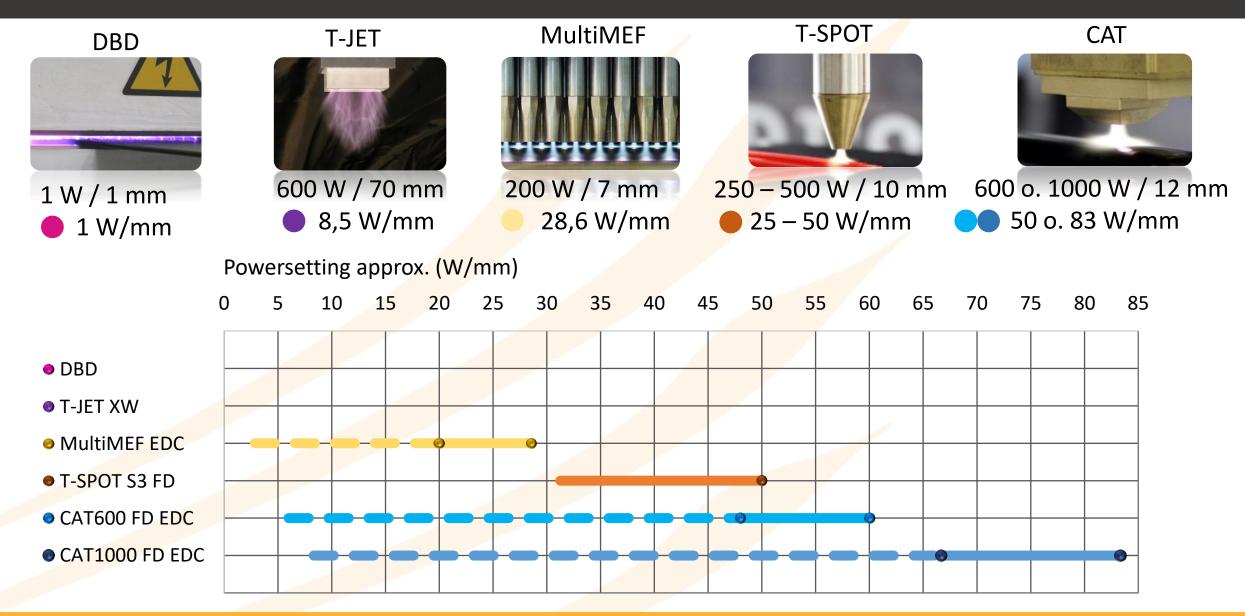
Possibilities to influence the plasma dose:

Adjust distance of nozzle to surface

Cons:

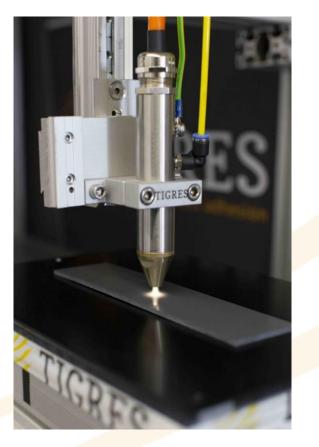
- 1. Normaly very smal process window of a few mm
- 2. Unpractical for different power levels with fixed nozzles

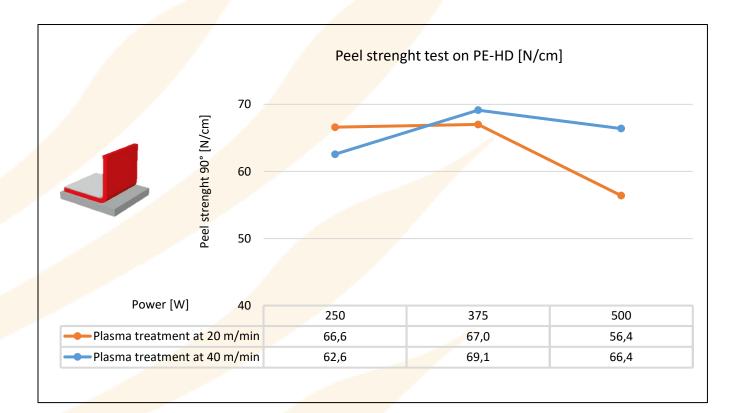
Change of treatment speed of nozzles or material


Cons:

- 1. Only possible, if process speed can be achieved (f.e. to fast or to slow)
- 2. Difficult in some productions (f. e. extrusion)

Power adjustment via generator


Advantage: Can be adjusted directly in generator according to the need, if process windows is suitable. Can be adjusted on the fly, online. Also also via I/O and BUS.


Plasma tools, power ratio

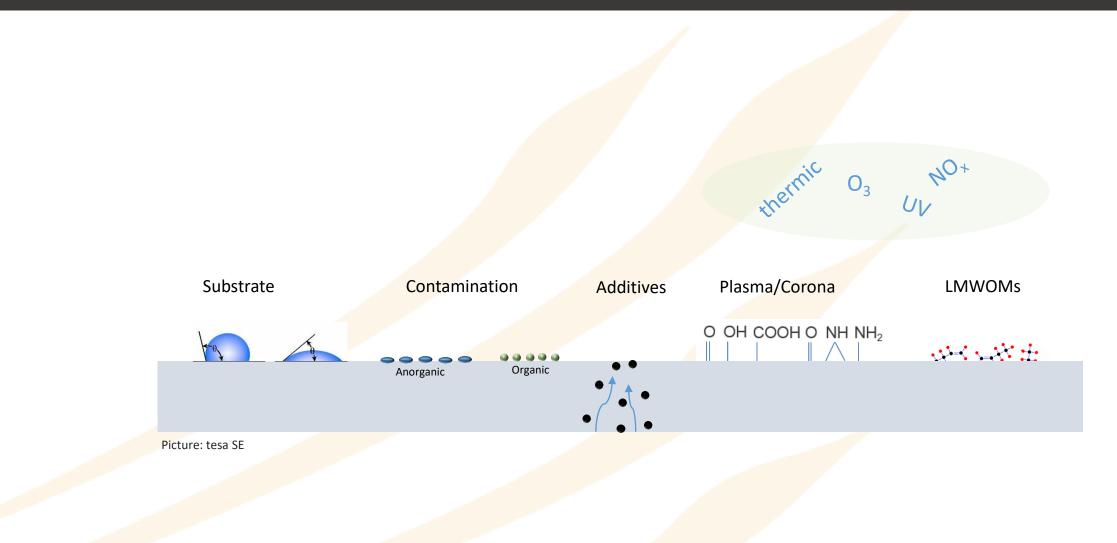
Plasma for perfect tape bonding

Influence of power and speed on adhesion

Plasma for perfect tape bonding

Conclusion

A good wettability is often required, but not a sufficiend necessity for good adhesion


 For optimal test results, a test series with different power settings is useful to find the optimal plasma dose

Power adjustable plasma generators enable an optimal plasma dose

Proof of adhesion of application is necessary!

Questions so far?

Complexity at the surface

Plasma for perfect tape bonding

The surface: Contamination

Typical contamination of the surface:

- Oil
- Grease
- Additives
- Finger prints
- Slip additives
- Release agents
- Oxydes
- Dust

Plasma for perfect tape bonding

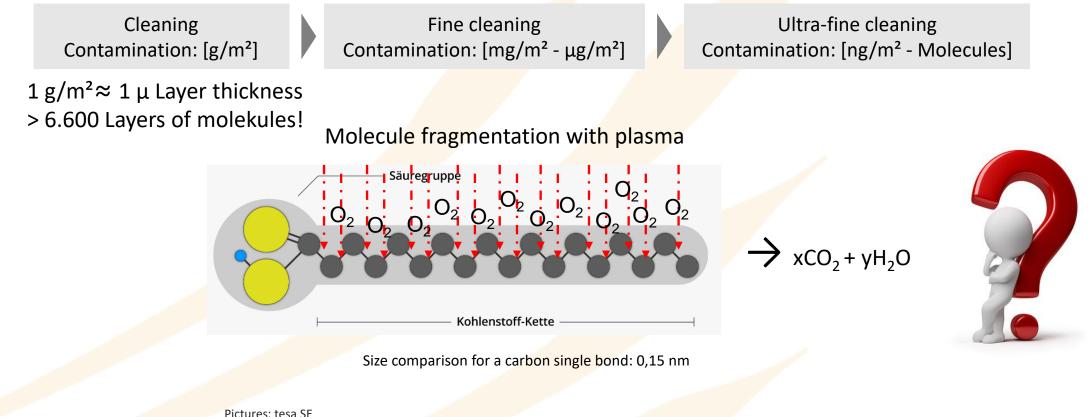
Cleaning with plasma

Oxidation processes:

-Oxidation of organic material into vapour, CO₂ and organic particles

 $(-CH_2 - CH_2 -)_n + 3nO_2 -> 2nCO_2 + 2nH_2O$

Kinetic energy:


-Acceleraction of particles (+100 eV) removes particles

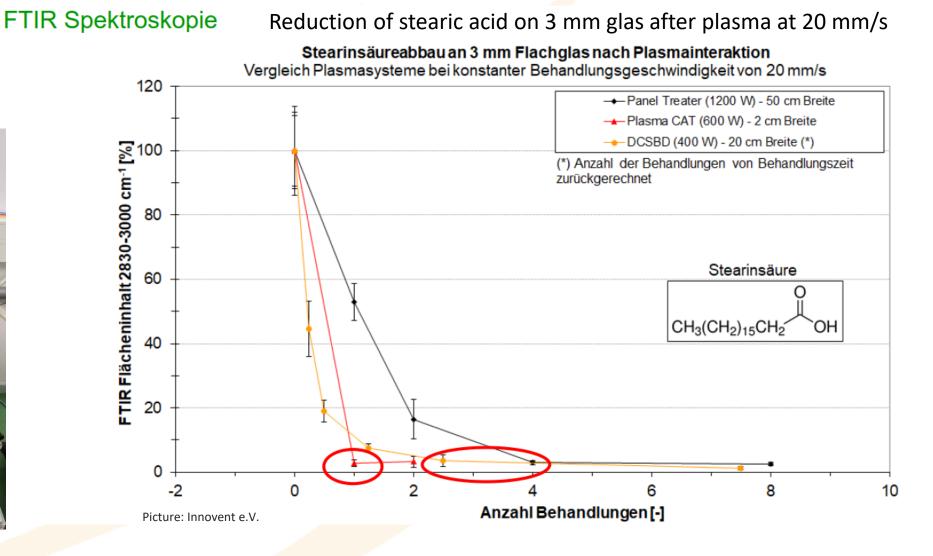
Thermal/kinetic energy:

-High plasma temperature and air pressure has cleaning effects

Tigres-plasma.de 36

Effect of plasma on contamination

Tigres-plasma.de 37

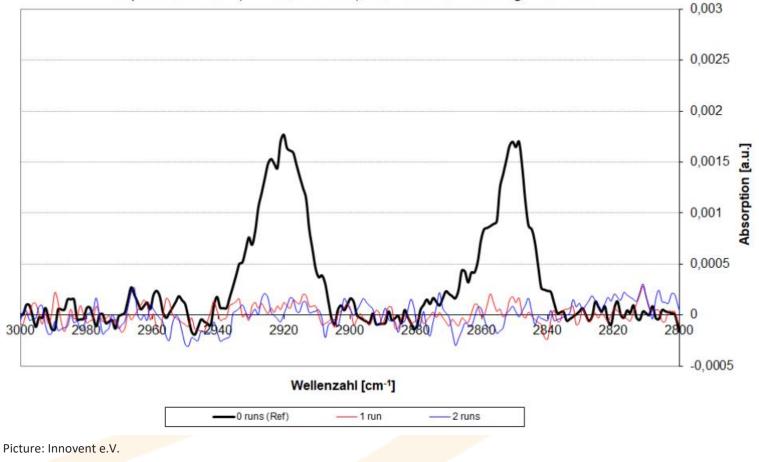

Pictures: tesa SE

The surface: Cleaning with plasma

Contamination stearic

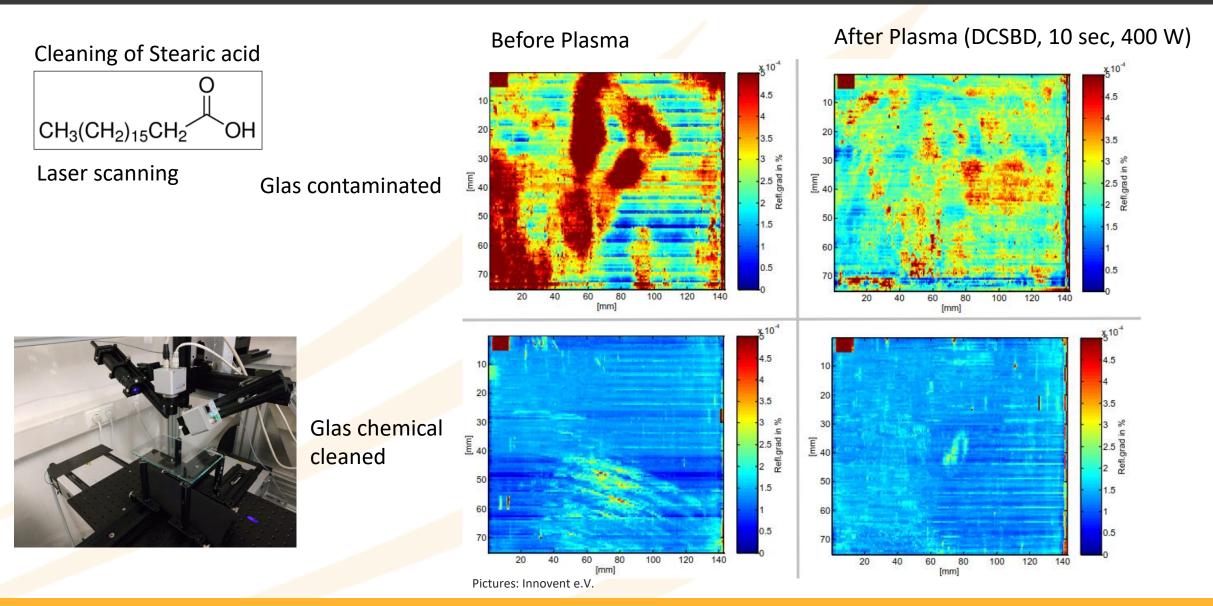
acid app. 100 nm

Picture: Innovent e.V., Dr. Oliver Beier

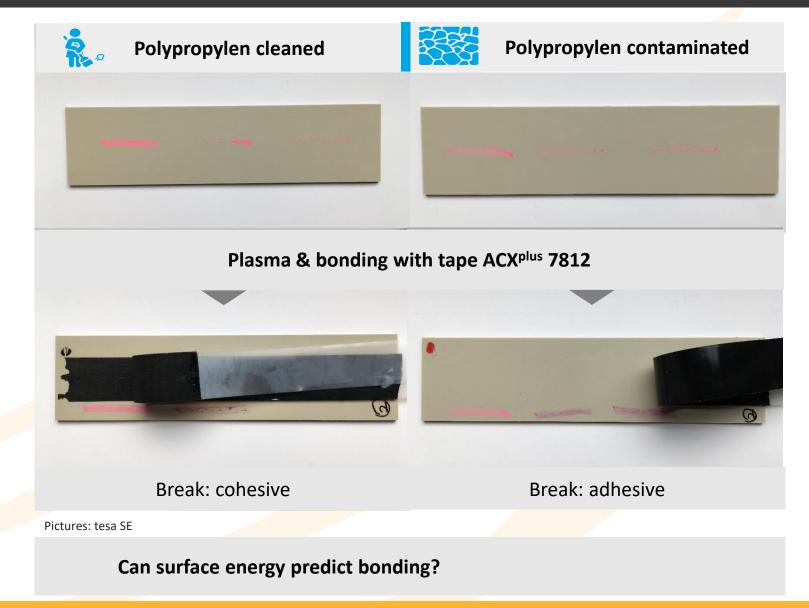


Tigres-plasma.de 38

The surface: Cleaning with plasma


FTIR Spektroskopie

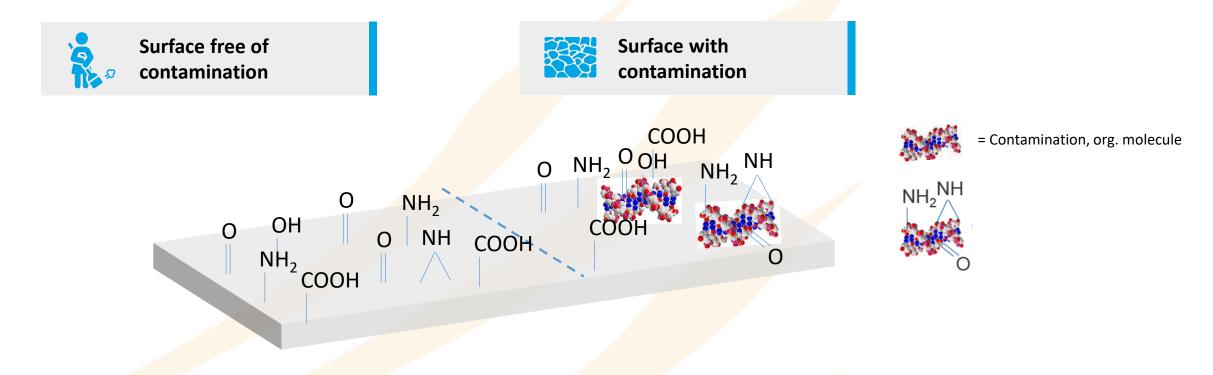
FTIR Spectoscopy on 3 mm glas, proof of organic residues FTIR Spektroskopie an 3 mm Flachglas, Nachweis organischer Rückstände Bsp: PanelTreater (1.2 kW, 20 mm/s), Anzahl der Behandlungen variiert



Plasma for perfect tape bonding

The surface: Cleaned vs. plasma treated

Plasma for perfect tape bonding


Plasma for perfect tape bonding

Condition	Surface energy [mN/m]	Bonding f. T-Peel 90° [N/cm]	Break type
Polypropylen cleaned [with Isopropanol]	30	12	A ^[100%]
Polypropylen cleaned & plasma treated	\rightarrow 44	→ 78	K ^[100%]
Polypropylen contaminated [Silikone system PDMS – 1h block storage 40°C]	< 30	5	A ^[100%]
Polypropylen contaminated & Plasma treated	> 48	→ 9	A ^[100%]
Plasma: TIGRES T-SPOT S2: v = 40 m/min, d Break type: Adhesion break [A], Mixed brea Measurement: T-Peel 90°, 300 mm/min, De	ak [M], cohesion break [K]		

Adhesion force doesn't correlate with surface energy!

Contaminations can not be safely identified with surface energy values!

Bilder: tesa SE

Tigres-plasma.de 43

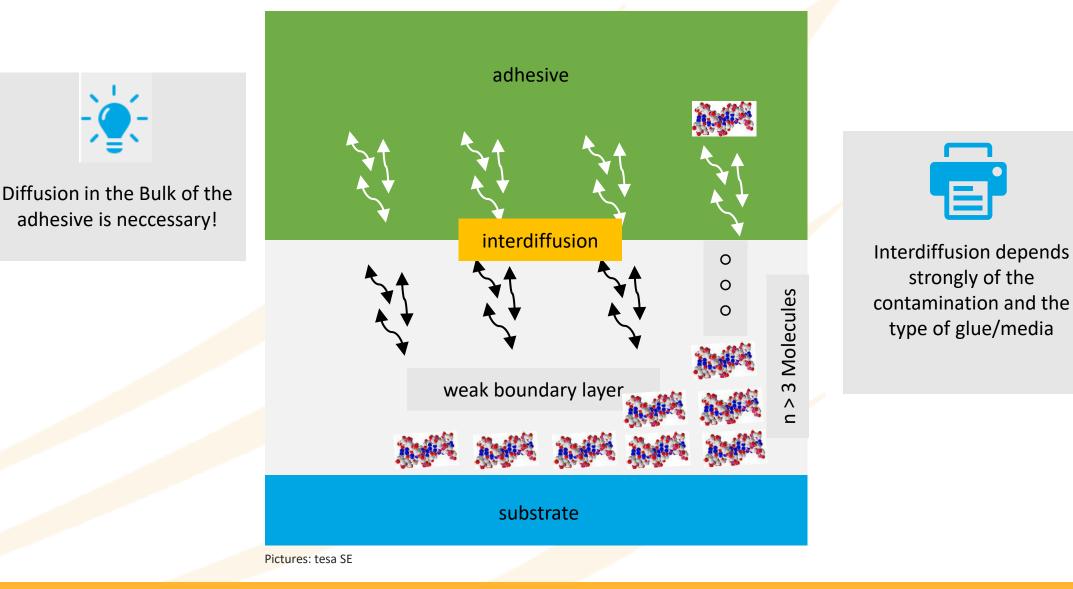
Pictures: tesa SE

Clean surfaces are functionalised with plasma

Also Contaminations are functionalisied and show high surface energies.

This doesn't show a good adhesion or cleaning of the contaminated surface.

Cleaning with plasma

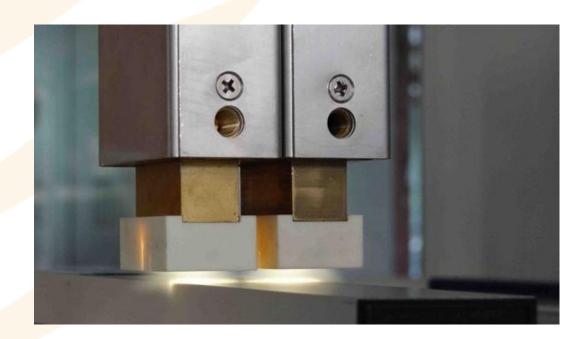

Why then is plasma used for cleaning?

Plasma for perfect tape bonding

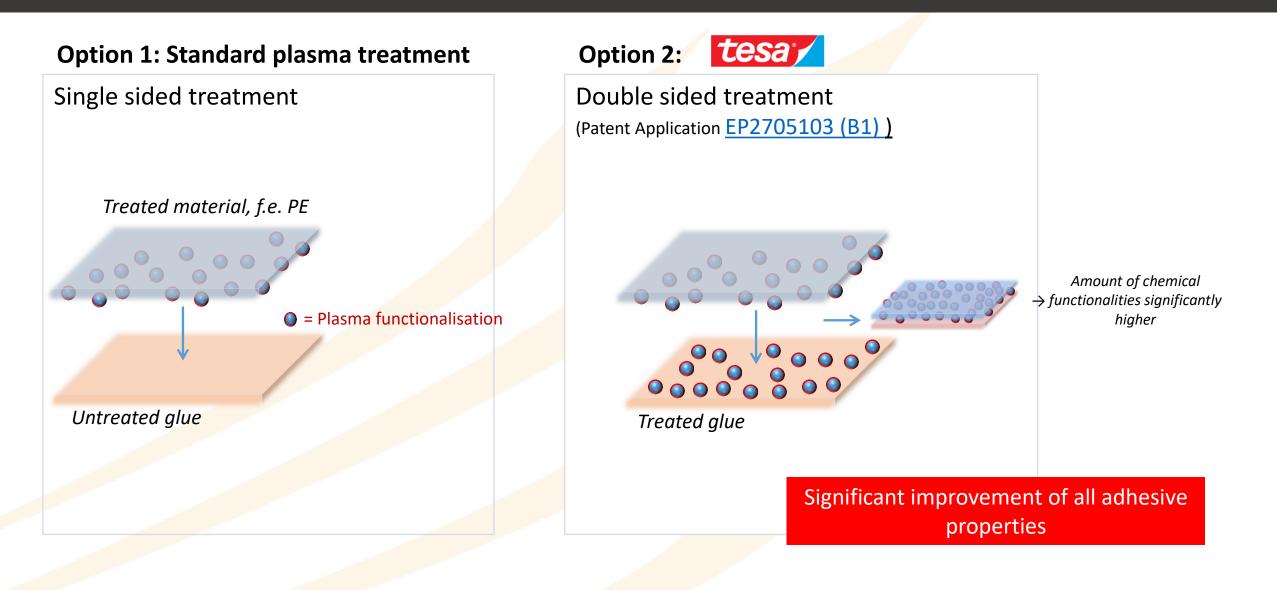
Condition	Surface energy [mN/m]	Adhesion T-Peel 90° [N/cm]	Break type
Polypropylen cleaned [with Isopropanol]	30	12	A ^[100%]
Polypropylen cleaned & plasma treated	44	78	K ^[100%]
Polypropylen contaminated [Silikone system PDMS – 1h block storage 40°C]	< 30	> 5	A ^[100%]
Polypropylen contaminated & Plasma treated	> 48	→ 9	A ^[100%]
Plasma: TIGRES T-SPOT S2: v = 40 m/min, d Break type: Adhesion break [A], Mixed brea Measurement: T-Peel 90°, 300 mm/min, De	ak [M], cohesion break [K]		

Pictures: tesa SE

Why the does plasma often work on contaminations?


Plasma for perfect tape bonding

Conclusion cleaning with plasma: Yes, but...


- 1. Cleaning:
 - Yes, but: Removal/Hydrophilizising of <u>thin</u> layers of organic components (<u>Fine</u> cleaning, especially in vacuum plasma). Test of application is necessary!
- 2. Electrostatic neutralizing:
 - Plastcis don't attract dust side effect of plasma treatment

Conclusion plasma for cleaning: If plasma works it is:

- 1. Simple and easy to use
- 2. Cost effective
- 3. Reproduceable
- 4. More environment friendly

Special: Treatment of adhesive in PSA applications

Plasma for perfect tape bonding

Special tesa: Activation of tape glue side

Advantage of double sided plasma treatment:

- Double sided treatment increases amount of functional groups
- Allows a broader spectrum of glue-material combinations
- Curing time is reduced from 72 h to 5-30 min (app. 80-95 % of adhesion values)
- For the same adhesion results smaler tapes can be used
- Difficult to treat materials can be used (POM, PMMA, ABS, ...)
- On some materials only tape side needs to be treated

Special: Double- and single sided treatment with tesa tapes

Tape K1

(Plasmabehandlung nach Verfahren PV1, Verklebung sofort nach Behandlung)

[0172]

Таре К1	Adhesion force N/cm				
Material:	PP	PET	CFK	KTL	
	45,53	47,10	38,16	37,58	
Double sided treatment	3,95	9,61	7,16	3,97	
Only material treated	17,71	12,11	12,47	14,81	
Only glue treated	2,98	25,85	37,16	36,98	

https://worldwide.espacenet.com/publicationDetails/originalDocument?FT=D&date=20180926&DB=EPODOC&locale=en_EP&CC=EP&NR=270 5103B1&KC=B1&ND=4

Surface energy material: Polar materials

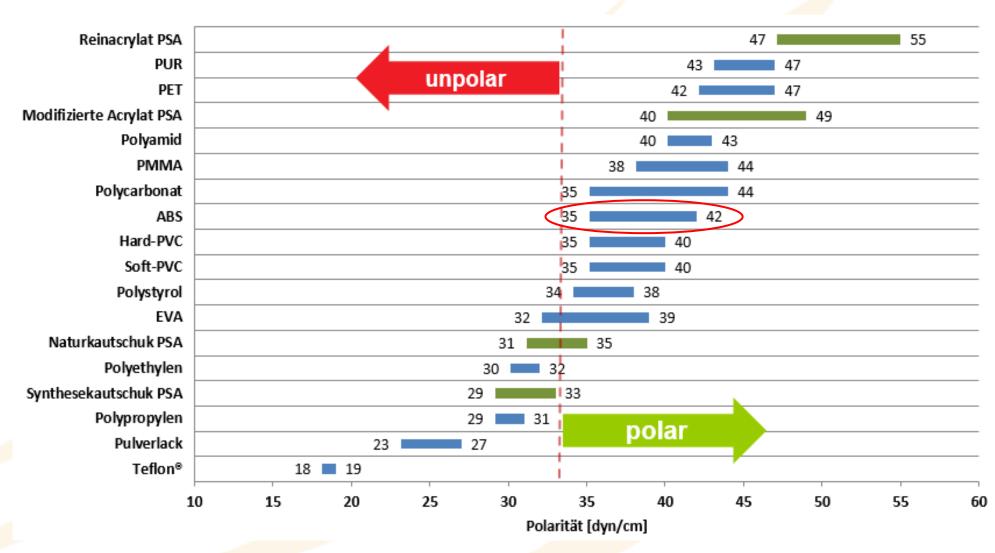


Bild: tesa SE

```
Tigres-plasma.de 51
```

Special: Double- and single sided treatment with tesa tapes on ABS

			Tabel	le 9				
			Klebkraft	[N/cm]				
	Таре	Material:	EPDM	PE	ABS	ASTM-Stahl	Lack 1	Lack 2
20	K1	Double sided treatment	42,16	42,98	42,55	44,41	39,99	40,54
20		Untreated	1,93	0,62	13,70	5,38	3,21	4,87
		Only material treated	5,78	5,78	3,90	5,30	4,44	4,25
		Only glue treated	1,10	0,71	11,47	43,22	2,85	4,00
25	K2	PV1	35,69	17,05	33,97	33,26	26,71	30,82
		Nichts behandelt	1,95	1,78	11,90	12,39	6,34	10,70
		Nur Substrat behandelt	18,61	14,16	13,66	13,19	12,61	12,19
		Nur Klebmasse behandelt	0,96	1,93	8,75	19,54	6,35	8,11
00	K3	PV1	87,53	76,85	84,87	84,65	81,76	83,81
30		Nichts behandelt	3,11	2,38	38,11	49,67	11,91	30,21
		Nur Substrat behandelt	61,65	64,85	43,25	73,14	37,47	39,20
		Nur Klebmasse behandelt	3,63	2,80	65,86	83,01	5,57	26,45
	K4	PV1	68,61	62,80	71,62	71,53	74,18	73,36
35		Nichts behandelt Nur Substrat	1,62	2,07	12,52	25,74	8,66	17,27
		behandelt Nur Klebmasse	30,42	28,05	30,63	32,55	33,2	33,17
		behandelt	3,36	2,02	10,27	69,17	9,63	17,57
	K5	PV1	39,25	30,17	37,80	39,38	38,20	38,10
		Nichts behandelt	0,69	0,63	9,95	28,25	2,15	17,17
40		Nur Substrat behandelt	24,04	22,69	25,70	30,90	24,69	27,37
		Nur Klebmasse behandelt	0,60	0,56	1,51	38,74	2,15	2,76

https://worldwide.espacenet.com/publicationDetails/originalDocument?FT=D&date=20180926&DB=EPODOC&locale=en_EP&CC=EP&NR=270 5103B1&KC=B1&ND=4

Plasma for perfect tape bonding

Special: Impovent curing time with double sided treatment of tesa tapes

		Tabelle 14 Klebkraft [N/c	m]				
Tape K1	Treatment	Lagerzeit nach Verklebung vor der Messung wie angegeben, bei 23°C 50%rF		PE	ABS	ASTM- Stahl	Lack 2
К1	ohne	3 Tage	1,93	0,62	13,70	5,38	4,87
	PV1	5 min	45,99	37,27	25,65	32,32	29,17
	PV1	3 Tage	42,16	42,98	42,55	44,41	40,54
	PV1	5 min	19,09	25,10	17,72	14,37	23,07
	PV1	3 Tage	35,69	17,05	33,97	33,26	30,82
K3)	ohne	3 Tage	3,11	2,38	38,11	49,67	30,21
	PV1	5 min	51,63	47,82	86,45	90,37	84,82
	PV1	3 Tage	87,53	76,85	84,87	83,01	83,81
K5	ohne	3 Tage	0,69	0,63	9,95	28,25	17,17
	PV1	5 min	21,09	34,47	42,90	43,74	42,59
	PV1	3 Tage	39,25	30,17	37,80	39,38	38,10

https://worldwide.espacenet.com/publicationDetails/originalDocument?FT=D&date=20180926&DB=EPODOC&locale=en_EP&CC=EP&NR=270

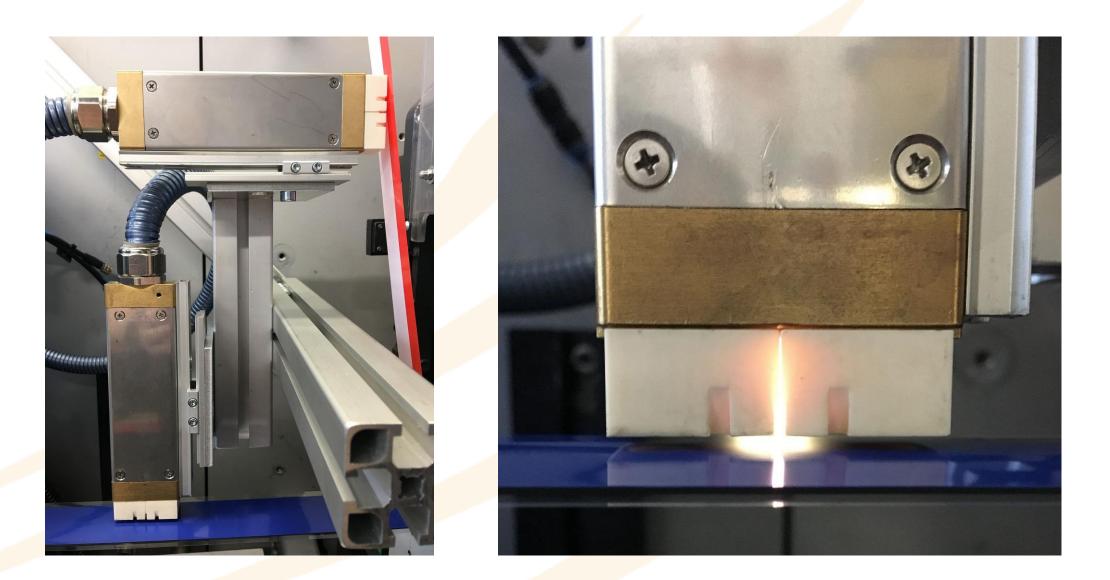
Special: Distance of double- and single sided treatment

Untergrund	Klebeband	Prozessgas	Abstand zur Klebemasse- oberfläche [mm]	Abstand zur Oberfläche des Untergrunds [mm]	F [N/cm]
ASTM-Stahl	К2	ohne Behandlung	-		10,70
ASTM-Stahl	K2	Luft	5	8	33,14
ASTM-Stahl	K2	Luft	8	8	35,85
ASTM-Stahl	K2	Luft	11	8	33,69
ASTM-Stahl	K2	Luft	14	8	32,87
ASTM-Stahl	K2	Luft	17	8	32,67
			V		
PP	КЗ	ohne Behandlung	-		4,48
PP	К3	N2	5	6	83,55
PP	КЗ	N2	11	12	82,63
PP	КЗ	N2	17	18	82,86
PP	КЗ	Luft	5	6	79,85

5103B1&KC=B1&ND=4

Special: Distance of double- and single sided treatment

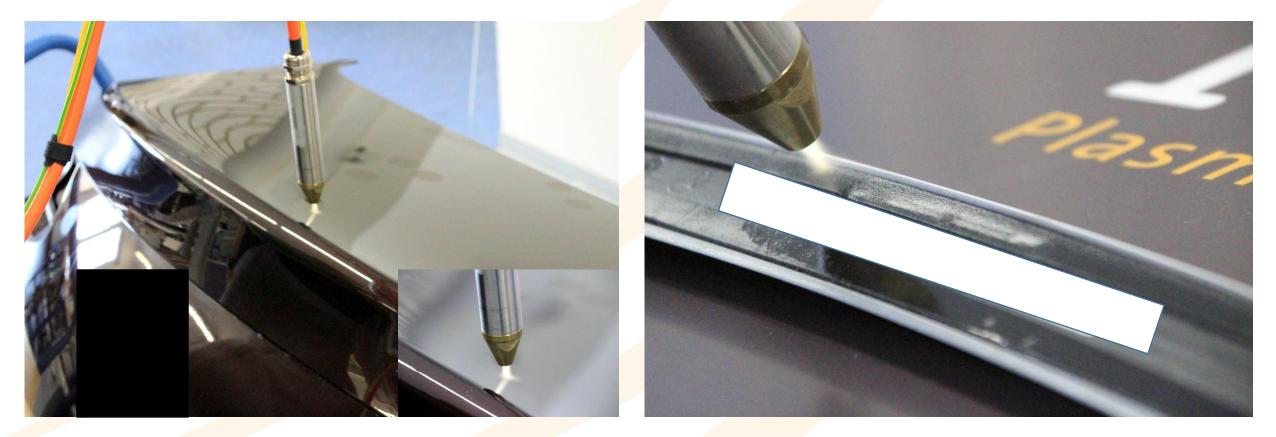
Untergrund	Klebeband	Prozessgas	ostand zur Klebem erfläche [mm]	asse- Abstand zur Oberfläche des Untergrunds [mm]	F [N/cm]
PP	К3	Luft		9	83,90
PP	К3	Luft		12	83,21
PP	K3	Luft		18	57,52


[0184] Hier wird nachgewiesen, dass das Verfahren robust ist gegen Variation von Abständen und Betriebsgas. Das Prozessfenster ist überraschend groß.

[0185] Bemerkenswerterweise kann bei Betrieb mit N2 ein größerer Behandlungsabstand genutzt werden als mit Luft.

Tigres-plasma.de 55

https://worldwide.espacenet.com/publicationDetails/originalDocument?FT=D&date=20180926&DB=EPODOC&locale=en_EP&CC=EP&NR=270
5103B1&KC=B1&ND=4


Special: Double sided treatment

Plasma for perfect tape bonding

Special: Double sided treatment

Application:

Material and glue have eventually to be treated with different power settings for optimal results

Plasma for perfect tape bonding

Special: Double sided treatment for consumer products

Gluing of electronic products

Up to now mostly primers are used for adhesion improvement

- Expensive
- Harmful to environment and health
- Difficult to apply and need a lot of maintenance
- Plasma coating is expensive, complex and needs high maintenance

Alternative double sided plasma treatment

- Easy and clean process
- Cheap
- Environmently friendy, climate neutral
- Reliable and reproduceability
- Full control and monitoring of all relevant parameters

Plasma for perfect tape bonding

Conclusion plasma treatment for tapes

Surface quality:

✓ The surface to be treated should be dry, fat free and dust free

Plasma dose:

- A good wettability is often required, but not a sufficiend necessity for good adhesion
- ✓ For optimal test results, a test series with different power settings is useful to find the optimal plasma dose
- Power adjustable plasma generators enable an optimal plasma dose

Cleaning:

Cleaning with plasma is possible, but has to be tested

Highest adhesion and instant adhesion, also for difficult material

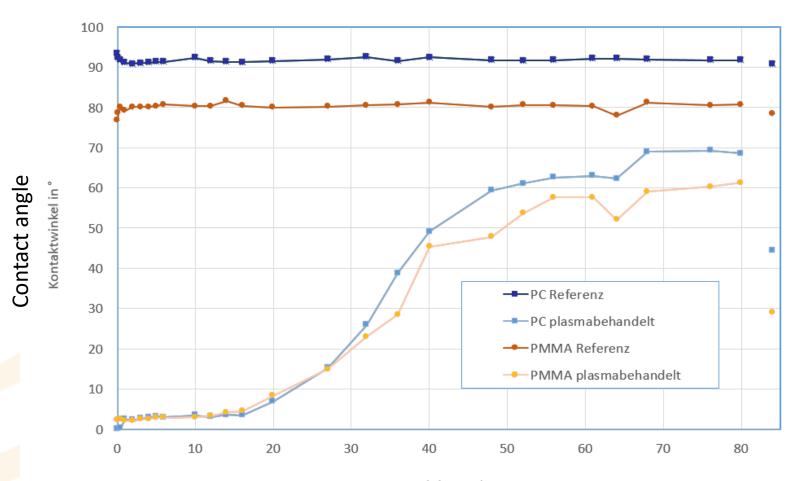
⁷ Double sided treatment with tesa tapes enable higher adhesion forces and shorter curing time, also for difficult material

Tigres-plasma.de 59

Lifetime of treatment

The lifetime of the treatment can vary a lot, between minutes (silicone) and years (PS) Mostly days to weeks.

Influences:


➤ Material

- Treatment method
 - Plasma versus Flame
 - Electrons, ions and photons etc.
- > Additives (slip agents, antistatics etc.)
- > Age of polymer when treated (f.e. PE film)
- ≻ Humidity
- ➤ Temperature
- ≻ Etc.
- Storage: In aluminum foil

Plasma for perfect tape bonding

If possible, the application should be done directly after the treatment

Lifetime of treatment in reality

Lagerzeit in Wochen Storage time in weeks

Quelle: Innovent e.V.

Plasma for perfect tape bonding

Not all Plasmas are the same

Different types of plasma can have different effects

Differences can be:

- Atmospheric or vacuum plasma
- Material of electrodes
- Frequency of plasma
- Temperature of plasmas
- Treatment in primary or secondary plasma
- Created radicals
- Created reaction produtcs (O³, NOx etc.)
- UV-Proportions
- Exposure time: Treatment processes need time. F.e. 2 x 500 W can be better than 1 x 1.000 W. The plasma dose can therefore, with same end results, be different
- Etc.

Plasma for perfect tape bonding

Overview procedure on material – adhesion and wettability

Improvement of A	Adhesion/oxy	/dation					Key:	
Method:	DBD	T-Jet	CAT	T-Spot	MEF	O ³	good	mostly satisfying results
Treating gas	Air	Air	Air	Air	Air	Air	average	results on average
Material:							poor	mostly poor results
PE	good	good	good	good	good	good		Material, with mostly only one technic working well
PEX	poor	average	good	good	good			
PP	good	good	good	good	good	good		
PC	good	good	good	good	good	good		
PMMA	good	good	good	good	good	good		
PEEK	poor	poor	average	average	average			
PET	good	good	good	good	good	gut		
PS	good	good	good	good	good	good		
POM	poor	poor						
ABS	good	good	good	good	good	good		
ABS/PC	good	good	good	good	good	good		
PA	average	average	good	good	good			
PA 6.6	average	average	good	good	good			
SAN			good	good	good			
PVC	average	average	good	good	good			
Fluor polymers:								
FEP	average	average	poor	poor	poor			
PVDF								
ETFE	average		average	average	average			
PFA	average		poor	poor	poor			
PTFE	average		poor	poor	poor			
Elastomere:								
Silicone	average	average	average	average	average			
TPE	poor	average	poor	poor	poor			
TPU			poor	poor	poor			
EPDM	good	average	good	good	good			
PUR	good	good	good	good	good			
Rubber	average	average	average	average	average			
gummi elasticum	average		average	average	average			
Others:								
UV-Coating	good	good	good	good	good			
Powder-Coating	good	good	good	good	good		Wax and PE	E-particles can disturb adhesion

Plasma for perfect tape bonding

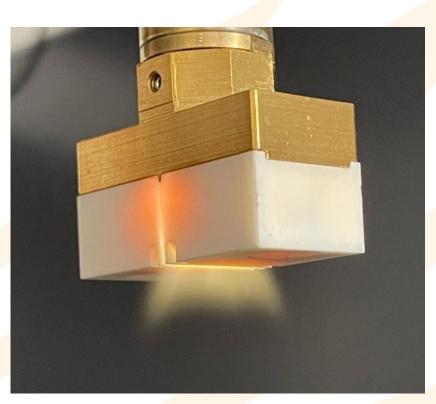
Overview procedure on material – cleaning and reduction

Cleaning/Oxidation:				
<u>Method:</u>	DBD	CAT	T-Spot	MEF
Treating gas	Air	Air	Air	Air
<u>Metals:</u>				
Stainless steel	good	good	good	good
Aluminum	good	good	good	good
Copper	average	average	average	average
Silver				
Reduction:				
<u>Method:</u>	DBD	САТ	T-Spot	MEF
Treating gas	Forming gas	Forming gas	Forming gas	Forming gas
<u>Metals:</u>				
Aluminum	poor	poor	poor	poor
Copper	average	average	average	average
Silver	average	average	average	average
Key:				
good	mostly satisf	<mark>fying resul</mark> ts		
average	results on av	rage		
poor	mostly poor	results		
	Material, wit	th mostly only	y one technic	working wel
Forming gas = N + app	r. 2-3 % H			

Plasma: Tool T-SPOT S3

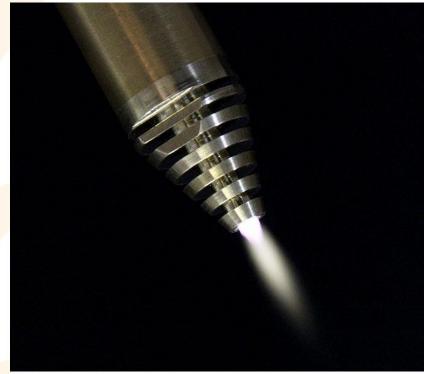
Plasma power:

App. **250 - 500 W per nozzle**, (app. 375 – 500 W for slot nozzle) Nozzles are convertible HV-Cable length: 2 m


Compressed air: App. **30 I/min** per nozzle

Weight:

App. 200 g, focus nozzle (FD) App. 315 g, slot nozzle (SD)


Lifetime electrode: Up to **3.000 h**

Plasma for perfect tape bonding

Treatment width slot nozzle:

Up to 25 mm per head Depth: app. 1-8 mm

Treatment width focus nozzle:

App. 8-12 mm per head Depth: app. 5-15 mm

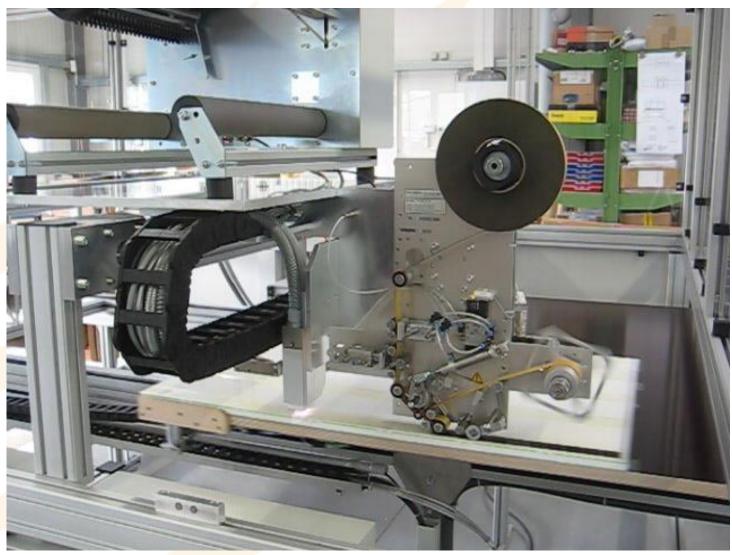
Corona: Tool T-JET

Counter electrode free corona treatment

Treatment speed up to app. 20 m/min

Standard version: 400 W/Nozzle no compressed air needed Treating width: app. 50 mm

New: XW version: 600 W/Nozzle no compressed air needed Treating width: app. 70 mm



Tigres-plasma.de 66

T-JET: Tape application

DOLLBERG Maschinenbau GmbH

Walter-Frese-Straße 23 D- 42799 Leichlingen Tel.: +49 2175-1809 794 Tel.: +49 2175-1809 795 Fax: +49 2175-1800 399 Mail: info@dollberg-maschinenbau.de www.dollberg-maschinenbau.de

Video: Dollberg Maschinenbau GmbH

M-Generator

- Modular, compact design
- ✓ Intuitive usable touch panel, external panel available
- ✓ Up to two/four nozzles per generator (M2/M4), mixing of nozzles types possible (f.e. T-SPOT and CAT)
- Each nozzle separatly controlled and adjustable
- High prozess reliability by monitoring of relevant system values for each single nozzle
- SQI (System quality index): Monitoring index of closed loop controller to ensure homogenius plasma power
- Efficient trouble shooting by detailled error log with functionality analyses and full text diplay
- Real time remote monitoring and maintenance with RSU
 - Full industry 4.0 functionality

Plasma for perfect tape bonding

/// TI	GRES	Unit (1): RI	EADY			
Change ເ	unit: 🗡	• →	Unit	ON	Unit	OFF
Channel:	State:	PWR:	PWR SE		Control:	
O Ch. 1:	IDLE	75 %	+	-	ON	OFF
OCh. 2:	ACTIVE	81 %	+	-	ON	OFF
O Ch. 3:	IDLE	100 %	+	•	ON	OFF
O Ch. 4:	ACTIVE	100 %	+	-	ON	OFF
	IPPORT SE	ETTINGS	All ch	annels:	ON	OFF

Process reliability: Real power control

Key Feature #1: Real Power Control for each plasma head

The M-Generator controls each plasma head individually with a closed loop controller.

The controller not only measures the plasma power, but controls the power of the plasma within a specified window.

Tigres-plasma.de 69

The controller turns off the plasma when the specified setpoint cannot be maintained.

What is controlled?

Current

The frequency controls the current

Monitored: Line voltage measurement

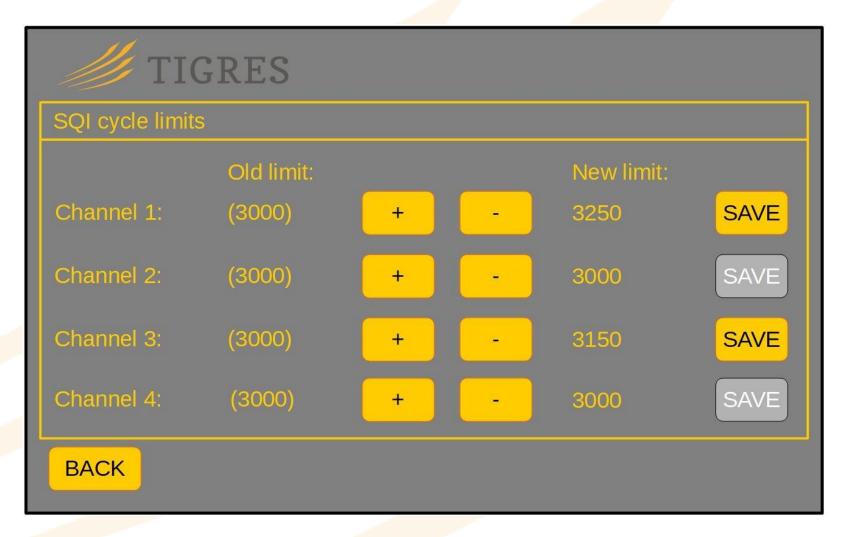
Process reliability: Real time controller monitoring SQI

Key Feature #2: Real time monitoring with System Quality Index (SQI)

The M-Generator controls the plasma discharge and calculates an SQI factor.

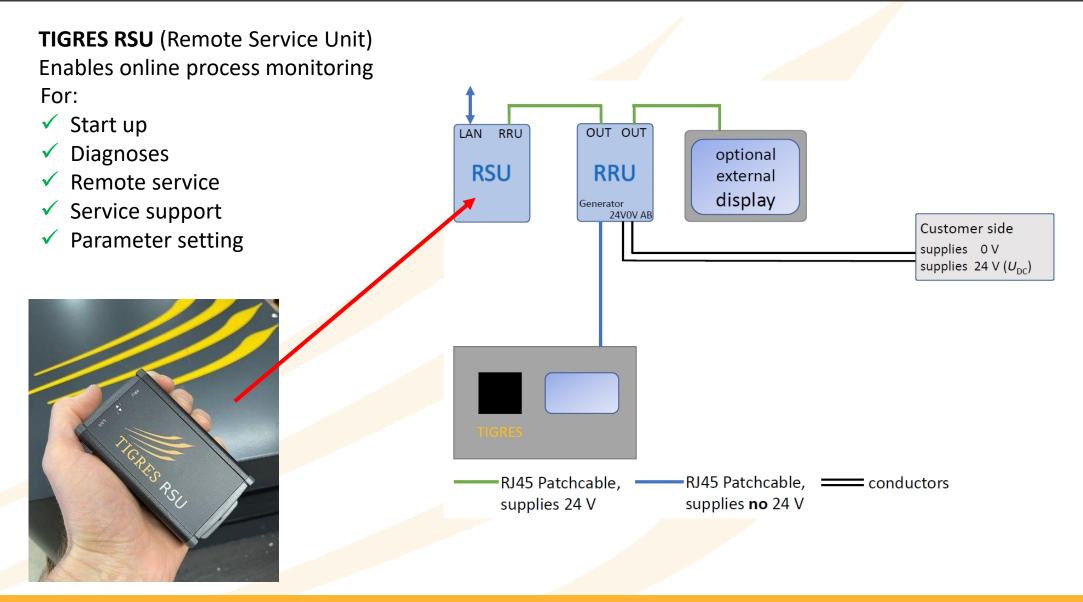
- 1. DC-Current feedback output stage
- 2. Working frequency (controls the DC-current)
- 3. Setpoint control values: Input display/interface (f.e. 500 W)
- 4. Primary current

Out of the values 1 and 3 the SQI factor is calculated.

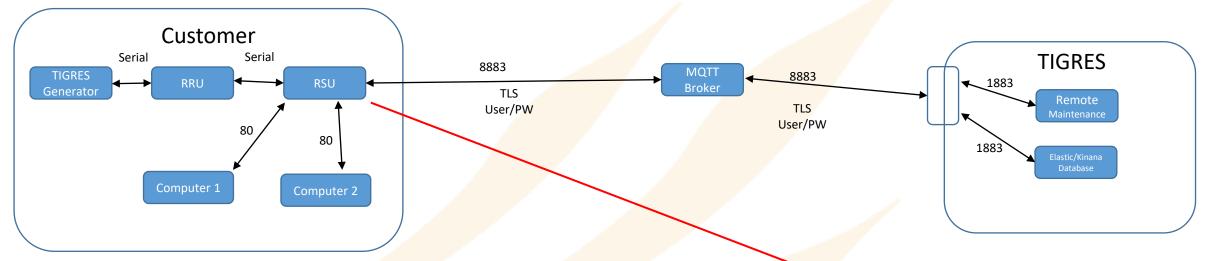

The SQI factor is a value which shows how hard the controller has to work to maintain the adjusted power.

The limit of the SQI can be adjusted in the display/BUS to the need of the application. (Very low for very sensitive processes, very high for very insensitive processes)

TIGRE	S
Information	/INT)
Unit address: 2	SN: 18-0004492
No Error	
Unit info: TEMP: 40	.7 C, PRESSURE OUT: 0 mbar
	#, SQI: 1225 #, TOS: 42,3 C, OT: 2h57min
	#, SQI: 746 #, TOS: 47,2 C, OT: 2h39min
	#, SQI: 595 #, TOS: 47,1 C, OT: 2h18min
Ch. 4: IGNIT: 4041	#, SQI: 639 #, TOS: 49,6 C, OT: 2h11min
	SV rev.: 5.9 HV rev.: 5


Process reliability: Real power monitoring with SQI

Key Feature #2: Real time monitoring with System Quality Index (SQI)


Plasma for perfect tape bonding

TIGRES <u>Remote</u> <u>Service</u> <u>Unit</u> RSU in real time

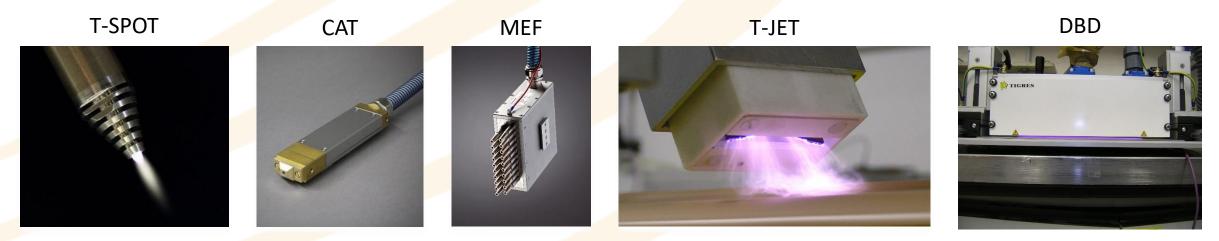
Tigres-plasma.de 72

Remote maintenance with <u>Remote Service Unit RSU</u>

- RSU delivers data only to TIGRES after installation about condition of generator
- Access to generator only by TIGRES, only by approval of customer

RSU = Remote Service Unit RRU = Round Robin Unit, Switch box ACU = Analog Control Unit

Plasma for perfect tape bonding


Testing TIGRES Plasma: On site, with test equipment, in the lab

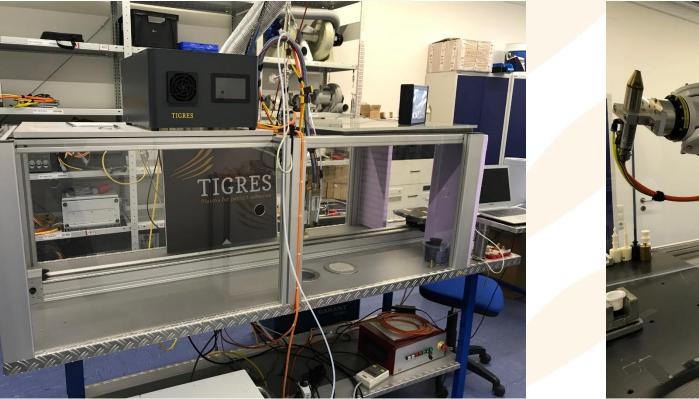
Testing at **your production facility**:

We support you with process consulting and in the testing with plasma systems at your production facility.

Rental systems:

More than 30 rental systems are available for testing. Training included (Videokon).

Plasma for perfect tape bonding

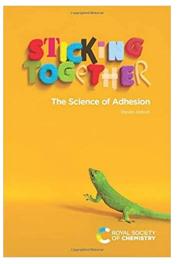

Testing TIGRES Plasma: In the lab

Processing of your samples:

Processing and analysing of samples for or with you, with verification and documentation of the results.

Practical training how to use plasma equipment for:

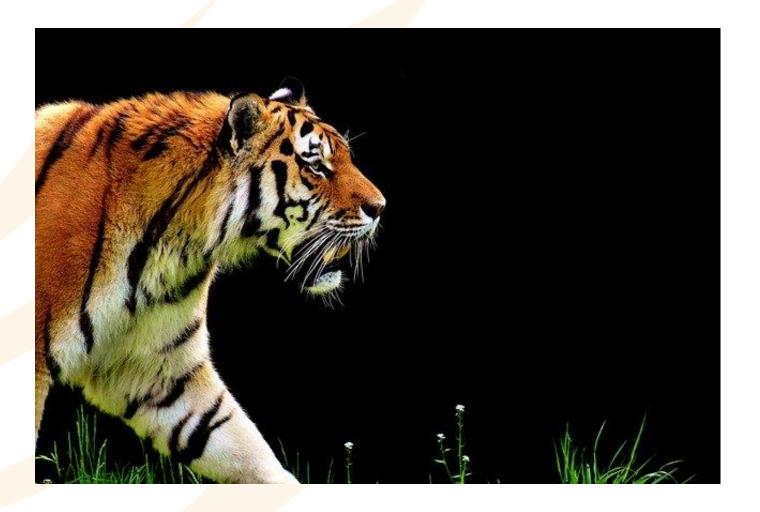
Activation, Cleaning, Deburring and plasma coating



Plasma for perfect tape bonding

TIGRES: Literature

For beginners: **"Sticking together - The science of adhesion**", in english by **Prof. Steven Abbott**, PhD in Chemistry:


https://amzn.to/3ppgWRE

All the books in englisch by Steven Abbott: https://www.stevenabbott.co.uk/books.php/

TIGRES: Archive webinars

Already held webinars can be watched anytime:

https://www.tigresplasma.de/en/webinars/182webinar-archiv

TIGRES: Linkedin

Please connect with TIGRES to stay in contact and get information about webinars, seminars, shows and plasma related content:

Linked in

TIGRES GmbH

https://www.linkedin.com/company/tigresgmbh

Thank you for you attention!

Contact:

Peter van Steenacker

+49 4176 948 7728 Steenacker@tigres.de

Tigres GmbH

Sandhagenweg 2

21436 Marschacht

TIGRES Plasma for perfect adhesion Made in Germany

www.tigres-plasma.de tigres@tigres.de Tel. +49 4176 948 77 0